Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 1 of 6 ### **Functional Requirement Specification** # **Project X and PXIE Ion Source** | Prepared by: Qing Ji, Lionel Prost | LBNL / Fermilab | QJi@lbl.gov
lprost@fnal.gov | |--|-------------------------|--------------------------------| | Approved by: A. Shemyakin, Injector Manager | Fermilab
AD | | | Approved by: V. Lebedev, CW Linac Scientist | Fermilab
AD | | | Approved by: R. Stanek, PXIE Lead Engineer Redeal Stand | Fermilab
Directorate | | | Approved by: S. Nagaitsev, Project Scientist S. Wayner | Fermilab
Project X | | | Approved by: M. Kaducak, Project X Project Engineer | Fermilab
Project X | | Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 2 of 6 #### **Revision History** | Revision | Date | Section | Revision Description | |----------|-----------|---------|-------------------------| | | | No. | | | 0 | 3/22/2013 | All | Initial Signed Release. | Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 3 of 6 #### **TABLE OF CONTENTS** | 1. | Introduction | . 4 | |----|---|-----| | 2. | Scope | . 4 | | 3. | Key Assumptions, Interfaces & Constraints | . 4 | | | Requirements | | | 5. | References | . 5 | Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 4 of 6 #### 1. Introduction: Project X is a high intensity proton facility conceived to support a world-leading physics program at Fermilab. Project X will provide high intensity beams for neutrino, kaon, muon, and nuclei based experiments and for studies supporting energy applications. The Project X Injector Experiment (PXIE) will be a prototype Front End linear accelerator. The construction and successful operation of PXIE at Fermilab will validate the concept for the Project X front end, thereby minimizing a large portion of the technical risk within Project X. The Ion Source is the first component in this accelerator, and is designed to meet the Project X and PXIE requirements. #### 2. Scope: The PXIE Ion Source assembly is a DC, H⁻ source designed to be capable of delivering 5mA (nominal) at 30keV to the Low Energy Beam Transport (LEBT) section. The Ion Source assembly consists of the ion source itself (H⁻ Volume-Cusp Ion Source) attached to a vacuum box, which allows for differential pumping. The vacuum box can also house a beam diagnostics station. The overall layout of the PXIE components is shown in Figure 1. In Project X two sources will be available on-line for redundancy, however in PXIE only one source will be used. Each source will be able to be isolated from the LEBT. FIGURE 1: Major Subsystems in the PXIE Linac #### 3. Key Assumptions, Interfaces & Constraints: The Ion Source will be installed initially in the PXIE facility. The source will conform to FNAL Engineering [4] and ES&H Standards [5]. All interfaces (power, instrumentation, vacuum, alignment, personnel protection, etc...) are described in separate Functional Requirement Specification documents. Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 5 of 6 #### 4. Requirements TABLE 2: Ion Source Assembly Requirements | Beam | | | |--------|---|---| | | Ion type | H- | | | Nominal output kinetic energy | 30 keV | | | Kinetic energy stability | 0.5% RMS | | | Nominal beam current | 5 mA | | | Maximum beam current | 10 mA | | | Beam current stability [for frequencies $f > 1$ Hz (ripples)] | ±5% | | | Duty factor | 100% | | | Transverse emittance* over 1-10 mA current range | < 0.2 mm mrad | | | Electron beam current at LEBT input | < 100 μΑ | | | Turn-off time | < 1sec | | Uptime | | | | | Mean time between maintenance (beam ON time) | > 350 hours | | | Pre-conditioned ion source turn-on time ^a | < 10 min | | | Ion source replacement time ^b (with closed-loop control circuit) | 8 hours | | Vacuum | | | | | Gas flow to LEBT (with beam on) | $\leq 4 \times 10^{-3} $ torr 1 s ⁻¹ | \underline{a} "Pre-conditioned ion source turn-on time" refers to the scenario in which, the on-line ion source fails, and the second ion source has been pre-conditioned i.e. demonstrated stable beam at nominal current - the source has then be maintained under vacuum with the gate valve closed. The operator needs to turn on the second ion source and configure the switching magnet such that the beam gets back online. \underline{b} - "Ion source replacement time" refers the scenario that the on-line ion source suddenly fails, but there is no pre-conditioned ion source available. The operator needs to either mount the 2nd ion source, or replace the filament of the failed source. In both cases, the system must be pumped down and the filament conditioned to the point where the closed-loop control system can provide stable beam downstream. * The rms emittance is defined using the second moments of the particle distribution in phase space (e.g.: $$x - x'$$) as follows: $\varepsilon_x = \left(\overline{x^2} \overline{x'^2} - \overline{x} \overline{x'}^2\right)^{1/2}$. In modeling, it is based on 100% of particles; in experiments, it may be based on a truncated intensity (95-100%) to reduce the effect of far tails on the calculated emittance value. #### 5. References: Documents with reference numbers listed are in the Project X DocDB: http://projectx-docdb.fnal.gov [1] Project X Functional Requirements Specification Document #: Project-X-doc-658 [2] Project X Injector Experiment Functional Requirements Specification Document #: Project-X-doc-980 [3] PXIE LEBT Functional Requirements Specification Doc. No. 968 Rev. 0 Date: 3/22/2013 Page 6 of 6 Document #: Project-X-doc-912 [4] Fermilab Engineering Manual http://www.fnal.gov/directorate/documents/FNAL_Engineering_Manual_REVISED_ 070810.pdf [5] Fermilab ES&H Manual http://www-esh.fnal.gov/pls/default/esh_home_page.page?this_page=15053